Элла Бикмурзина

© Вокруг Света

Наука и техникаМир

2705

23.02.2010, 09:59

Время учиться видеть

Что видит человек, зависит от перцептивной стратегии, выбранной его мозгом.

Фото (Creative Commons license): squacco

Для того, чтобы понять, что с этими людьми, недостаточно внимательно вглядываться в фотографию. Надо еще немного подумать. Как ни странно, это общее правило: глаза видят, но «картинку» формирует мозг. Более того, мозг может сформировать «картинку», даже если глаза не видят — например, закрыты.

Ежесекундно сознание каждого из нас оказывается под настоящей лавиной сенсорной информации — стук клавиш компьютера коллеги по работе, еле доносящиеся из приоткрытого окна голоса случайных прохожих, шероховатость книжных страниц, прохладное прикосновение шёлковой блузки, насыщенный аромат кофейных зёрен, обжигающий вкус мяты…

Видеть мозгом

Внешний мир держит нас в плотном сенсорном кольце. И чтобы не захлебнуться в этом водовороте звуков, запахов, образов, вкусов, наш мозг, постоянно фильтруя информацию, создаёт её потоки. Тому, что окружающий мир предстаёт перед нами не в виде чего-то хаотичного и бесконтрольного, а стройно, организованно, мы обязаны перцептивным стратегиям, находящимся в распоряжении нашего мозга.

Если, не задумываясь, ответить на каверзный вопрос: «Благодаря какому органу мы видим?», ответ, вероятнее всего, будет неверным. Глаза — это всего лишь оптика. За самое интересное отвечает мозг — ему предстоит выбрать из сенсорного потока те ощущения, на которые стоит обратить внимание в первую очередь, организовать их в узнаваемые формы и интерпретировать. На это уходят, как правило, мгновения. Всё происходит настолько быстро и гладко, что мы не отдаём себе отчёта в том, насколько сложна эта задача.

Наблюдая за происходящим, человеку иногда бывает трудно даже понять, что именно он видит глазами, а что воспринимает благодаря другим органам чувств. Согласно Аристотелю, помимо конкретных ощущений, получаемых от пяти органов чувств, у человека есть способность воспринимать вообще, sensus communis, что на русский обычно переводится как «общее восприятие». И эта способность теоретически может дать возможность формировать зрительный образ даже мозгу от рождения незрячего человека. Только вот реализуется ли эта теоретическая возможность в действительности?

Фото (Creative Commons license): half-blood prince

Внимание человека может фокусироваться на отдельных предметах, всё остальное при этом сливается в единый общий фон.

Одна из главнейших зрительных перцептивных стратегий — «фигура — фон» (фокусировка изображения на определённом предмете) — позволяет вычленять из окружающего мира те предметы, которые интересны нам в первую очередь, — к примеру, находить в толпе знакомого человека. Константность восприятия (константность формы, константность размера) основывается на нашем знании о том, что характеристики предмета не меняются, даже если меняются наши ощущения относительного их. С какого бы расстояния вы ни рассматривали свой дом, вы будете знать, что его размер постоянен и не меняется, даже если с расстояния пять километров вам кажется, что он со спичечный короб.

Вопрос, который лишил покоя не одно поколение когнитивных психологов, — являются ли наши перцептивные способности врождёнными или, быть может, это результат обучения? Возможно ли жить полноценной жизнью, не обладая этими способностями?

Осторожно: обрыв!

Учёные-«нативисты» полагают, что такой важный визуальный навык, как способность человека определять глубину, является врожденным, появляется у него как реализация биологически заложенной программы. «Эмпиристы» же придерживаются мнения, что она — результат обучения. Внести определённую ясность в этом вопросе удалось благодаря исследованиям Элеаноры Гибсон (Eleanor Gibson, 1910–2002) и Ричарда Уока (Richard Walk). В своей статье «The «visual cliff» они писали:

Когда дети ещё ползают или только учатся ходить, они часто падают, преодолевая более или менее высокий уступ. При недостаточной бдительности взрослых они могут упасть с кроватки или со ступенек. По мере развития мышечной координации они начинают избегать подобных инцидентов самостоятельно. Здравый смысл подсказывает, что дети учатся распознавать опасные места на опыте — то есть падая и набивая синяки и шишки.

Фото (Creative Commons license): Lee Jordan

Образец «тротуарной живописи» Джулиана Бивера (Julian Beever). Изображение кажется трехмерным только под определенным углом зрения.

Гибсон и Уолк изучали способности к определению глубины с помощью экспериментального устройства «визуальный обрыв», который представлял собой стол высотой 120 см и с верхней частью из толстого прозрачного стекла. На одной половине стола находилась панель с рисунком из красных и белых квадратов, расположенных в шахматном порядке. На второй половине стола — эта панель лежала на полу, так что посередине стола возникала видимость обрыва.

В исследовании участвовали 36 детей в возрасте от 6 до 14 месяцев, а также детёныши различных животных — цыплята, крысята, ягнята, котята и прочие. Младенцев по очереди помещали на середину стола, после чего их матери звали их сначала на «мелкую» сторону, а потом — в сторону обрыва. Лишь три ребёнка неуверенно двигались в сторону обрыва на зов матери, все остальные либо плакали от огорчения, что не могут преодолеть пропасть, либо испуганные ползли в противоположную от обрыва сторону. Тот факт, что дети, оказавшись перед обрывом, были в состоянии осознать опасность, не вызывал у учёных сомнений.

Часто они сначала всматривались вниз через стекло, а потом разворачивались и ползли прочь от края обрыва. Другие сначала ощупывали стекло руками, но, несмотря на то что чувствовали его твёрдость, отказывались ползти по нему.

Однако выводы Гибсон и Уолк можно было оспорить — дело в том, что у детей, принимавших участие в эксперименте, было как минимум шесть месяцев жизни, чтобы приобрести этот ценный навык.

Поразительными оказались результаты исследования детёнышей животных. Решающим фактором в способности определять высоту был то, насколько данному виду навык необходим для выживания. Так, цыплята, которые должны уметь рыть землю в поисках пропитания сразу после того, как вылупятся из яйца, никогда не ходили по «обрыву», зато крысята, для которых зрение не так важно, ходили по обрыву смело.

В итоге Гибсон и Уок пришли к выводу, что все виды животных приобретают способность различать глубину к тому моменту, когда они начинают передвигаться самостоятельно. А может быть, и раньше…

Фото (Creative Commons license): Dan Phiffer

В ходе переработки зрительной информации мозг может ошибаться — неверная оценка размера, формы или цвета объектов, характер их движения приводят к зрительным иллюзиям. Ошибки можно использовать, например для достижения определенного эстетического эффекта: даже зная, что там на самом деле, человек не может «скорректировать» изображение. В действительности этот белый коридор вовсе не такой длинный, как кажется.

Казус Майка Мэя

Когда Майку Мэю (Mike May) было 43 года, ему с помощью стволовых клеток восстановили роговицу глаза. Он был абсолютно слепым после того, как облил себе лицо керосином в возрасте трёх лет. Однако то, что Мэю вернули способность видеть, вовсе не означало, что он будет автоматически воспринимать увиденное также, как все остальные.

Дело в том, что любое живое существо с самого рождения занято зрительной практикой и использует любую возможность рассматривать окружающие предметы. Только благодаря долгим тренировкам зрительный канал превращается в линию связи, по которой мы получаем около 90% сведений, воспринимающихся нашим сознанием. Долгих сорок лет мозг Мэя не получал естественных зрительных образов, не «тренировался».

Таким образом у исследователей появилась возможность ответить на вопрос, заданный еще Дидро в его «Опыте о человеческом разуме»: «Может ли слепорожденный, которому возвращено зрение, одним зрением, без осязания, отличить шар от куба?» Иначе говоря, адекватен ли зрительный образ, сформированный без помощи зрения, истинному виду.

Оказалось, что не совсем. Когда Мэю вернулось зрение, возникли проблемы с интерпретацией. Например, ему было трудно отличать двухмерные объекты от трёхмерных. При спуске с горы на лыжах он не мог отличить тень горы от самой горы. Майк вообще не распознаёт лиц, испытывает затруднения, пытаясь отличить фон и сам предмет. О том, какие ещё визуальные обманы приходится переживать Майку Мэю, можно прочитать в английской газете Guardian, где были опубликованы его дневниковые записи.

Крайне любопытный случай описал в своём труде антрополог Колин Тернбалл (Colin M. Turnbull), в конце 1950-х — начале 1960-х изучавший культуру пигмеев Бамбути, проживавших в лесах Итури на территории Заира (ныне Конго).

Тернбаллу помогал в общении с пигмеями местный двадцатилетний молодой человек Кенж. Антрополог вскоре обратил внимание на то, что Кенж не может правильно оценивать размер объектов на большом расстоянии. Так как вся его жизнь проходила в очень густом лесу, этот навык у него просто не был развит. Например, увидев вдали стадо буйволов, пасущихся в нескольких километрах от него, он принял их за насекомых. А когда они с Тернбаллом стали подъезжать к животным и те постепенно увеличивались в размере, Кенж посчитал, что это колдовство. Подобное же происходило и другими предметами.

Фото (Creative Commons license): saikofish

Комната Эймса — помещение, созданное психологом Адельбертом Эймсом в 1946 году — сконстурирована таким образом, чтобы вызвать оптическую иллюзию. Из-за ложной перспективы, которая создаётся в том числе узорами на стенах и полу, мы воспринимаем помещение прямоугольным. Человек, стоящий в ближнем углу комнаты, выглядит великаном, а находящийся в дальнем углу — карликом. Когда он двигается из одного угла в другой, создаётся ощущение, что он увеличивается в размерах или уменьшается.

Это наблюдение Тернбалла стало доказательством того, что у пигмеев Бамбути ввиду отсутствия потребности не была развита такая перцептивная стратегия как константность восприятия размера. Из этого можно сделать вывод, что данная способность — скорее, приобретаемая, а не врождённая.

Впрочем, получать искажённые представления об окружающем мире можно не только из-за неразвитых перцептивных стратегий, но и из-за нарушений в работе тех отделов мозга, которые отвечают за интерпретацию изображения. У человека не просто одна зрительная зона, а тридцать полей позади мозга, которые позволяют видеть мир. Каждая из них отвечает за разные аспекты зрения.

Например, зона V4, как предполагают, связана с цветовым зрением, а срединная височная зона касается зрительного восприятия движений. Доказательством тому служат пациенты с повреждёнными зонами. Одни видят мир чёрно-белым (монохроматы, их менее 0,01%). Другие не могут различать, как быстро движутся объекты и в каком направлении. Для них налить воды из графина или перейти дорогу — серьёзная проблема.

Два типа зрительных систем

Зрение человеку необходимо для решения двух основных задач: для получения представления о предметах окружающего мира и для того, чтобы управлять своими действиями, направленными на эти объекты — то есть для того, чтобы иметь представление, как вообще выглядит стул, и для того, чтобы смочь его передвинуть.

Ещё в 1990-е профессор Мэлвин Гудейл (Melvyn A. Goodale) из (University of Western Ontario) и профессор Милнер (Milner A.D.) из (Durham University) выдвинули гипотезу, что сигналы, приходящие от глаз в зрительную кору, разделяются на два разнонаправленных потока нервных импульсов. Один поток передаёт информацию в нижнюю часть мозга, где формируется детальная репрезентация окружающего мира («зрение-восприятие»). Второй — в область задне-теменной коры и используется для гибкого контроля манипуляций с видимыми объектами («зрение-действие»).

Чтобы успешно провести какие-то манипуляции с объектом — например, схватить падающий со стола бокал из муранского стекла, — для мозга важно вычислить фактический размер объекта и установить его точное положение по отношению к наблюдателю. «Зрение-восприятие» работает иначе: в этой ситуации абсолютные размеры не имеют значения, первостепенной задачей становится оценка размера, формы и ориентации объекта по отношению к другим объектам.

Фото (Creative Commons license): Donna Sutton

Чтобы проиллюстрировать существование двух типов зрительных систем («зрение-восприятие» и «зрение-действие»), исследователи проводили опыты с иллюзиями выпуклого и вогнутого изображения.

Чтобы доказать верность этого предположения, следовало найти такую ситуацию, в которой мозг может видеть по-разному — в зависимости от задачи. В эксперименте, результаты которого были опубликованы в журнале «Brain Research», группа исследователей из Университета Западного Онтарио (University of Western Ontario) и Университета Бристоля (University of Bristol) пыталась проверить верность этого предположения с помощью иллюзии перевёрнутой маски. Обычно, когда человек смотрит на маску с обратной стороны, он видит нормальное выпуклое лицо, хотя на самом деле лицо вогнутое. Участникам эксперимента дали простейшее задание — быстро смахнуть пальцами с вогнутого или выпуклого лица специальную метку размером с насекомое.

Результаты оказались удивительными. При необходимости действовать быстро верховодило «зрение-действие», в такой ситуации человек правильно попадал по метке независимо от того, вогнутая маска или выпуклая. В то же время, когда необходимости действовать не было, и ведущую роль играло «зрение-восприятие», мозг принимал любое лицо — и выпуклое, и вогнутое — за выпуклое. Вывод, который сделали исследователи: в ситуации, когда от нас требуется действовать, мы видим чётче и правильнее.

Чтобы человек получал максимально объективную визуальную картину мира, его мозг должен проделать титаническую работу. Наша зрительная система делает очень много для того, чтобы придать окружающему миру смысл. Но в ходе этой работы набирается немало погрешностей: нас может подвести оптика, то есть глаза (близорукость, дальнозоркость), какие-то перцептивные стратегии восприятия могут быть развиты по тем или иным причинам недостаточно хорошо, к тому же чудачить может мозг, интерпретируя полученную картинку по своему усмотрению — нужно действовать, он увидит одно, а при созидании — другое. Если сложить все эти погрешности, возникает сомнение — насколько реален тот мир, который мы видим? Видят ли люди, окружающие нас, то же самое или, быть может, их мир выглядит иначе?

Элла Бикмурзина

© Вокруг Света

Наука и техникаМир

2705

23.02.2010, 09:59

URL: http://babr24.com/?ADE=84135

bytes: 15186 / 14106

Обсудить на форуме Бабра в Telegram

Поделиться в соцсетях:

Автор текста: Элла Бикмурзина.

Другие статьи в рубрике "Наука и техника"

Игорь Бычков: новая попытка захвата власти

Судя по всему, недавний скороспелый ученый совет в Иркутском научном центре и последовавший скандал вокруг него - только начало большого проекта передела иркутской науки.

Максим Бакулев

Наука и техникаРасследованияСкандалыИркутск

3492

20.09.2020

Следственный комитет должен заниматься преступлениями в исторической науке

Сообщают, что председатель Следственного комитета РФ, генерал юстиции Александр Бастрыкин решил создать подразделение в составе Следственного комитета, которое бы занималось расследованиями в сфере реабилитации нацизма и фальсификации истории.

Дмитрий Верхотуров

Наука и техникаИсторияРасследованияРоссия

7925

15.09.2020

В Китае найден древнейший атлас тела

Учёные наконец-то разгадали таинственный манускрипт, которому насчитывается более 2000 лет. Шелковая рукопись была найдена в Китае при раскопках гробницы Мавандуй ещё в 1973 году. Всё это время письмена не могли расшифровать, потому что они были написаны на древнем диалекте.

Миша Ковальски

Наука и техникаИсторияМир

3315

05.09.2020

Скандал в ИНЦ продолжается

Продолжается борьба за власть в Иркутском научном центре и попытка снятия со своей должности директора ИНЦ Константина Апарцина. 1 сентября на сайте ИНЦ была опубликована выписка из протокола Ученого совета ФГБУН ИНЦ СО РАН от 28.08.2020 года.

Лера Крышкина

Наука и техникаРасследованияИркутск

6158

01.09.2020

Любовь к романтике вызываетcя мутацией

В большинстве случаев мутация ассоциируется с чем-то страшным и опасным. На самом деле это не так. Мутация — это любое изменение генетического кода. Оно может не только превращать организмы в мутантов, но и быть вполне полезным.

Миша Ковальски

Наука и техникаМир

3035

31.08.2020

Закулисная революция в Иркутском научном центре

Пока вы спали (С), в Иркутском научном центре произошла незаметная, но для многих громкая революция. Началось все с обмена любезностями между действующим директором ИНЦ Константином Апарциным и научным руководителем того же ИНЦ Игорем Бычковым.

Лера Крышкина

Наука и техникаРасследованияИркутск

8429

31.08.2020

Вероятность светового загрязнения Байкала исследуют иркутские учёные

Молодые учёные Иркутска завершили экспедицию по Байкалу, целью которой было изучить, как искусственный свет влияет на эндемичные организмы озера. Экспедиция длилась два дня - 19 и 20 августа 2020 года.

Миша Ковальски

Наука и техникаМолодежьИркутск Байкал

4075

28.08.2020

Сибирские учёные создали ГМО осину

Группа российских ученых вывела новый сорт осины (он же тополь дрожащий). Она отличается ускоренным ростом. По словам учёных, разработка может быть востребована предприятиями лесной отрасли.

Миша Ковальски

Наука и техникаЭкологияКрасноярск

3500

25.08.2020

Работа иркутских учёных вошла в мировой отчёт о состоянии климата планеты

В августе 2020 года вышел ежегодный международный отчет «State of the Climate 2019». В издание включены результаты научных оценок состояния климата нашей планеты. Выпуск глобального отчета издается Американским метеорологическим обществом.

Миша Ковальски

Наука и техникаЭкологияИркутск

3737

21.08.2020

К концу века женщины станут умнее и перестанут рожать

Население нашей планеты наконец-то начнёт снижаться после 2064 года. Такие выводы сделала команда исследователей из Вашингтонского университета Сиэтла. Результаты исследования опубликованы в научном журнале Lancet.

Миша Ковальски

Наука и техникаМир

4444

19.07.2020

Байкальскими нерпами займется Москва

Масштабное исследование единственного байкальского млекопитающего организуют московские учёные совместно с фондом «Озеро Байкал». Об этом стало известно 13 июля 2020 года.

Миша Ковальски

Наука и техникаБратья меньшиеЭкологияРоссия Байкал

4485

15.07.2020

Уныние приводит к слабоумию

Постоянное чувство грусти, беспокойства, тревоги, тоски и вообще негативные мысли приводят к накоплению вредных веществ, а в дальнейшем и к нейродегенеративным заболеваниям, в том числе и к развитию болезни Альцгеймера. К таким выводам пришли учёные из Лондонского университета.

Миша Ковальски

Наука и техникаЗдоровьеМир

3845

22.06.2020

Смарт: Бабр для умных

Будет сложно. Новый регламент сдачи экзамена на водительские права

В МВД разработали новый регламент по приёму экзаменов на водительские права. Документ опубликовали на федеральном портале проектов нормативно-правовых актов. Главное нововведение заключается в отказе от экзамена, который в народе называется «площадка».

Алиса Беглова

Интернет и ИТРоссия

2148

13.09.2020

Гарантированный доход: путь к тунеядству?

Бывший премьер-министр России Дмитрий Медведев предложил ввести в России гарантированный доход.

Алиса Беглова

Интернет и ИТРоссия

3430

09.09.2020

Новые ПДД: тонировка, «островки» и средства индивидуальной мобильности

Вслед за корректировкой регламента по приёму экзаменов на водительские права обществу явили новые изменения в правила дорожного движения. Проект ПДД с поправками разработали совместно Минтранс и ГИБДД. Ранее на SmartBabr: Будет сложно.

Алиса Беглова

Интернет и ИТРоссия

1456

16.09.2020

Аналог человеческой кожи, способный ощущать боль

Австралийские исследователи впервые разработали искусственную кожу, которая может чувствовать боль, как человеческая кожа. Эта инновация может найти применение в области здравоохранения и, конечно же, в робототехнике.

Александр Егоров

Интернет и ИТРоссия

573

18.09.2020

Россия на пороге массовой вакцинации: что нужно знать

Предстоящий осенний и зимний эпидемиологический период обещает быть особенным и насыщенным. На традиционный сезон ОРВИ и гриппа, который наблюдается каждой осенью и зимой, придётся продолжение коронавирусной эпидемии.

Алиса Беглова

Интернет и ИТРоссия

5339

06.09.2020

Лица Сибири

Глисков Александр

Панько Александр

Фомин Андрей

Шагин Андрей

Дудин Петр

Карих Юрий

Моисеев Роман

Гаськов Александр

Чимэдийн Сайханбилэг

Базаров Борис